CYTOCHEMICAL STAINING FOR THE DETECTION OF ACUTE AND CHRONIC BLOOD LEUKEMIA

ORCID: 10.7904/2068–4738–VII(14)–46

Omid Lakzaie AZAR¹, Nasrollah MORADI KOR², Mohanna EHSANI¹, Saman AIUBI¹, Fatemeh Asadi RAHMANI¹

¹Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, IRAN
²Young Researchers and Elite Club, Kerman Branch, Islamic Azad University, Kerman, IRAN
*Corresponding author: omid.lakzaieazar@yahoo.com

Abstract. Objective: Lymphoblastic leukemia based on cell morphology dominant coloring Cytochemical into three main groups: 1L, 2L, 3L classify, Although the clinical value of the expected lifespan in adults is unknown, but in terms of prognosis and clinical course and response to treatment methods in children is important. Methods: 109 peripheral blood samples from patients suspected of Razi Hospital Hematology Center was developed leukemia, and follows Cytochemical staining was performed on each sample. Results: 19 samples by alpha–naphthalen propa noic acetate esterase staining positive 15/78 percent and 84/21 percent were negative. 12 samples analyzed by acid phosphatase staining was found that 25 % of the samples were positive and 75 % negative, also the 25 samples that were analyzed by alkaline phosphatase staining, 100 % of the negative and none of the samples were positive, and 34 samples were examined by staining Periodic acid shifts 97/55 % of the negative samples and only 2/94 percent positive, and from 12 samples by staining was evaluated Na phthile AS–D 16/66 % positive and 83/33 % of the samples were negative. Conclusions: The diagnosis of leukemia, the disease situation and select pin for the treatment of all cases with morphological characteristics of the cells was not possible, therefore, to reach the correct diagnosis Cytochemical tests and immune cell phenotype and cytogenetic studies are needed.

Keyword: Acute and Chronic Lymphoid Leukemia, Cytochemical, Prognosis.

Introduction
Hematologic malignancies involving bone marrow and lymph node diseases that originate, early disorders, including leukemia and bone marrow and immunoproliferative diseases (myeloid sclerosis) and myeloproliferative syndromes (myeloid metaplasia with myelofibrosis and Polycythemia [YUE et al., 2015; CHEN et al., 2014]. How to treat a patient with Polycythemia absolutely must be done through the logic to determine if patients with Polycythemia secondary or primary (Polycythemia Vera) [SHRESTHA et al., 2013; SETOODEH et al., 2012].

The history and physical examination, the patient may not respond to this question, a man with lung and chest, wheezing, cyanosis and severe chronic obstructive pulmonary disease, barrel that is the speed of a patient HET (Paul Toric) with splenomegaly with Polycythemia Vera is most likely, will be diagnosed respectively [YAMAMOTO et al., 2015; SHARMA and TYAGI, 2014]. Simple laboratory data in most patients with Polycythemia Vera are high, however, most patients with Polycythemia secondary normal [ABDULSALAM et al., 2014, BUTU et al., 2015].

Despite the low level of oxygen saturation, because that Polycythemia is a compensatory mechanism to hypoxemia, therefore, history, physical examination and laboratory investigation, will differentiate between primary and secondary Polycythemia, of course, sometimes the cause is not obvious Polycythemia secondary may need more tests to find the cause is rare [GUPTA et al., 2014, CRISTINA, et al., 2014].

The rare causes include abnormal hemoglobin with increased affinity to oxygen, renal cysts secretion of erythropoietin, Hemangioblastoma brain, and hepatocellular carcinoma, Polycythemia Vera in the normal control of cell production in the bone marrow is removed, although the erythroid involved
and this involvement will increase in red cell mass, the increased production of granulocytes and platelets in most cases it can be seen, Polycythemia Vera has some differences with other myeloproliferative clinical symptoms, myelofibrosis with myeloid metaplasia, essential thrombocythemia, chronic myelogenous \cite{YUE et al., 2015; HE et al., 2013].

Cytochemical more specific and precise method for the diagnosis of acute lymphoblastic leukemia, the routine Hematoxin & Eosin staining color diagnosis is undifferentiated, by selecting a sample. Cytochemical staining using the panels and determine the nature of the reaction of the leukocyte cell leukemia quickly define.

The aim of this paper is the cytochemical staining for the detection of acute and chronic blood leukemia.

Material and methods

Sterile speculum, sterile cotton swab, Glass slides, diamond stylus, ethanol, methanol and acetone, absolute homogeneity, toluidine blue staining kit.

Alpha–naphthalen propanoic acetate esterase kit, Naphthol AS–D chloroastat esterase, acid phosphatase, PERIODIC–ACID SCHIFF (PAS), all of Manufacture, Sygma–Aldrich company, german product, Olympus company microscope imaging.

Methods Sampling

Knowing documentation Razi Hospital in coordination with the previous sampling methods were referred to the hospital, and from those for blood disorders (leukemia) were referred for biopsy, biopsy was performed.

Attending random cluster sampling, immediately after sampling, and drying the slides fixation solution, all the samples were fixed.

Preparation of samples

Peripheral blood samples were taken every 11 samples were prepared slides, all slides were coded by a diamond pen, the dried slides temporary fixation with a solution that is 1 volume of ethanol, 1 volume of methanol and acetone was prepared 3 shares were fixed, and then slide the boxes we Filing, and the Laboratory of Immunology we moved lahijan Azad University Branch, to investigate the pattern of leukocyte 1 gram of series slides stained with toluidine blue method, according to the morphology of the white blood cells, white blood cells, staining was noted in the population under study is preliminary, so if there is corruption in collecting samples so check white blood cells on is inefficient to investigate the differential diagnosis of adult cells based on pattern recognition Classic 5 cells, white blood cells, Naphthol AS–D chloroastat esterase staining, alpha–naphthalen propanoic acetate esterase, Acid phosphatase, periodic acid–Schiff with the books of commercial construction company Sigma–Aldrich was used.

Check expand stained

It should all leukocyte cells and adult groups correctly and without error and the ability to separate high from each other be identified.

The appearance of Morphological white blood cells in the development of stained, cytochemical colors and patterns observed in Cytochemical staining was compared and a broader pattern of white blood cells to be identified pentavalent.

Open the painting that did not feature a suitable extension of the study subjects were excluded.

Morphological changes of cells

All morphological changes of cells, including cell quality, inflammatory changes, stained with toluidine blue and examined.

Check leukocyte cell

Cytochemical staining for evaluation of leukocyte cells are used, and the samples under a saw microscope. Stained with toluidine blue, acid phosphatase, neutrophils are observed.

Eosinophils by Periodic acid–Schiff staining, and acid phosphatase, under an optical microscope with a 100×lens were observed.

To view basophils with light microscopy of Periodic acid–Schiff staining and toluidine blue test.

Mast cells in the toluidine blue and PAS staining visible, Monocytes by alpha–naphthalene propane acetate
esterase and Naphthol AS–D choloroacetat esterase staining stained are colors.

Lymphocytes by color, alpha–naphthalene propane acetate esters, Naphthol AS–D choloroacetate, acid phosphatase, are stained.

That's all positive and negative results for acute lymphoblastic leukemia as a percentage of results can be expressed.

Photography

Open stained learn ways to take pictures of each of the white blood cells were used. All stained slides were examined and the typical image of each leukocyte cell of any Use Olympus optical microscope with conventional CCD a magnification of 100X with a calibrated optical 100 and microscope was harvested imaging software was harvested and Software database was coded.

Toluidine blue staining

Slides with a solution of 1 volume of ethanol, 1 volume of methanol, and 3 volumes of acetone fixed, after transfer to the laboratory slides ready to put on a tray coloring, and Toluidine blue on the grapefruit throw, after 15 to 20 minutes offer with water slides, after drying the slides can be viewed with the microscope.

Naphthol AS–D choloroacetate esterase staining

In this method, proven solution by mixing 18 mL of citrate solution, and 27 mL of acetone and methanol (5 mL) was built, and the slides were placed in one minute, the solution to be done was to prove, then rinsed with deionized water, then pH=7/6 Trizymal solution, by solving a 7/6 trizymal dense buffer to 9 parts of deionized water was prepared, and a capsule RR salt, and then add 2 mL naphthalen propanoic acetate was mixed for 20–15 seconds.

All slides were prepared in the solution for 30 minutes and then washed with deionized water for 3 minutes naphthalen propanoic acetate solution by dissolving a capsule naphthalen propanoic acetate in 2 mL of monomethyl ether glycol obtained, Painting background slides for 5–10 minutes in a solution of haematoxylin and then washed in running water were dried in the open air.

Target cells by light microscopy to identify species and micrometer measurements were examined and photographed.

Acid phosphatase staining

In this method, proven solution by mixing 25 mL of citrate, 65 mL of acetone, and 8 mL of 37 % formaldehyde was made, and the slides were immersed for 3 seconds in this solution to be fixed, then washed with deionized water.

Then the two tubes 5.0 mL Fast Garnet GBC solution and 5.0 mL of sodium nitrite solution was poured and was mixed for 30 seconds.

In a large glass jar, 45 mL of deionized water One mL Fast Garnet GBD solution that the Previously prepared 5.0 mL Naphthol AS–B1 phosphate solution two mL of acetate was added, and the slides were placed for one hour in a Jar, after this time, washed with deionized water, and for coloring the background for two minutes in a solution of haematoxylin were placed.
After washing with running water, dried in the open air, target cells by light microscopy to identify specific and micrometer measurements were examined and photographed.

Periodic acid–Schiff staining

In this method, fixation solution by mixing 5 mL of formaldehyde with 45 mL of ethanol 95°C was produced, the slides were exposed for one minute in a solution to the fixing operation to be performed, the slides were washed in running water for one minute and then placed 5 minutes in Periodic acid solution, the slides were washed well with distilled water. 15 minutes were Schiff solution, next 5 min washing with running water, and in painting background were 90 seconds in a solution of haematoxylin, slides were washed in running water must be drained, target cells by light microscopy to identify species and micrometer measurements were examined and photographed.

Alkaline phosphatase

1. the first 45 mL of distilled water to bring the temperature 18 to 26°C.
2. then we prepared diazonium salt solution in which 1 mL of sodium nitrite are added to 1 mL of alkaline FRV.
3. and then the salt solution prepared in distilled water which had been prepared in the first step are added.
4. then 1 mL Naphthol AS–BI to the diazonium prepared salt solution adding, and it into a glass jar poured, and well incorporate.
5. The sample is poured into jars and we wait 30 seconds and then the samples were washed with distilled water for 45 minutes, and then bring to the slides well dry, after all the samples in the baseline alkaline solution for 15 minutes, so stay from direct light, to get a good color, because these colors are sensitive to light and the light loses its enzymatic activity and the disabled, after 15 min of incubation for 2 minutes were well washed with distilled water and bring to the dry slides, and then microscopic we evaluate the samples.

Following results were obtained of the 19 samples analyzed by Cytochemical staining, Alpha–naphthalen propanoic acetate esterase 15/75 percent positive, and 84/21 percent were negative. and 12 samples by acid phosphatase staining was found 25 % of the samples over the color positive and 75 % were negative, and also the 25 samples that were analyzed by alkaline phosphatase staining, 100 % of the samples were negative, and 34 samples were examined by staining Periodic acid shifts 97/05 % of the negative and only 2/94 percent of the samples were positive, and from 12 samples by Naphthol AS–D staining was evaluated 16/66 % positive and 83/33 % of the samples were negative, in general it can be concluded staining was performed for acute lymphoblastic leukemia Single alpha–naphthalen propanoic acetate esterase, acid phosphatase, Periodic acid–shift, and Naphthol AS–D can show a positive reaction, that would be the staining are specifically used for the diagnosis of acute lymphoblastic leukemia.

Results and discussion

Following results were obtained of the 19 samples analyzed by Cytochemical staining, Alpha–naphthalen propanoic acetate esterase 15/75 percent positive, and 84/21 percent were negative and 12 samples by acid phosphatase staining was found 25 % of the samples over the color positive and 75 % were negative, and also the 25 samples that were analyzed by alkaline phosphatase staining, 100 % of the samples were negative, and 34 samples were examined by staining Periodic acid shifts 97/05 % of the negative and only 2/94 percent of the samples were positive, and from 12 samples by Naphthol AS–D staining was evaluated 16/66 % positive and 83/33 % of the samples were negative (Table 1 and Figure 1).
Table 1. Cytochemical characteristics in acute lymphoblastic leukemia

<table>
<thead>
<tr>
<th>Negative Reaction</th>
<th>Positive Reaction</th>
<th>Color Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>84/21</td>
<td>15/78</td>
<td>ANAE</td>
</tr>
<tr>
<td>75</td>
<td>25</td>
<td>APH</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>ALPH</td>
</tr>
<tr>
<td>97/55</td>
<td>2/94</td>
<td>PAS</td>
</tr>
<tr>
<td>83/33</td>
<td>16/66</td>
<td>NASD</td>
</tr>
</tbody>
</table>

In general it can be concluded staining was performed for acute lymphoblastic leukemia Single alpha–naphthalen propanoic acetate esterase, acid phosphatase, Periodic acid–shift, and Naphthol AS–D can show a positive reaction, that would be the staining are specifically used for the diagnosis of acute lymphoblastic leukemia.

Figure 1. Cytochemical staining of positive and negative responses in lymphoid cells.

Cytochemical staining general results obtained indicate that it was:

- Alpha–naphthalen propanoic chloroacetate or specific esterase (AChE) which acute lymphoblastic leukemia is negative, but in some cases of chronic lymphoid leukemia is positive.

- PAS Stained, often with a rough granular cytoplasm has been PAS–positive acute lymphoblastic leukemia.

- The positive reaction of the acid phosphatase is localized in 20 % of cases of ALL can be seen, that the origin of leukemic T cells (T cell ALL) implies (Figure 2).

Figure 2. A: Alpha–naphthalen propanoic acetate esterase staining (ANAE): Granulated positive T–lymphocytes and monocytes, B: Alpha–naphthalen propanoic acetate esterase staining (ANAE):
positive granules in B and T–lymphocytes, C: Alpha–naphthalen propanoic acetate esterase staining (ANAE): positive reaction in monocytes, lymphocytes T cell positive, V: Alpha–naphthalen propanoic acetate esterase staining (ANAE): positive granules in neutrophils and T–lymphocytes and T–prolymphocytes, X: Alpha–naphthalen propanoic acetate esterase staining (ANAE): T and B lymphocytes positive reaction to platelets and cells positive for blasts–Alpha Color naphthalen propanoic acetate esterase activity in monocytes show strong, D: Acid phosphatase (Aph): positive reaction in thrombocytes, lymphocytes, neutrophils and morphological characteristics

Prolymphocytes and T–lymphocytes shows, Studies show that these colors in blast cells in the region show a positive reaction from the Golgi. T–CLL lymphocytes is also positive,

Periodic acid shift (PAS): L: two blast cells with PAS have been extremely positive, one round and the other against the background of positive cytoplasmic granules, Z: for negative lymphocytes and neutrophils seem positively stained, E: For lymphocytes positive for positive thrombocytes, positive blast cells, F: Positive blast. As well as stained, G: Positive blast cells and Lymphocytes negative, P: Positive granules, W: Weak positive lymphocytes, M: Positive thrombocytes and Lymphocytes negative.

Conclusions
Diagnosis of leukemia, to predict disease status and choice of treatment in all cases with the morphological characteristics of the cells was not possible therefore, to reach the correct diagnosis Cytochemical tests and immune cell phenotype and cytogenetic studies are needed, knowing documentation Razi hospital in rasht city in the context of sampling and in coordination with the previous was admitted to the hospital and from those for blood disorders (leukemia) were referred for biopsy, biopsy was performed Patients were randomized to and the cluster approach 11 slides from each patient (a total of 102 slides), blood samples were taken immediately after sampling and drying the slides fixation solution, all the samples were fixed.

Peripheral blood was taken from each sample, 11 slides were prepared all slides were coded by a diamond pen are then the dried slides temporary with a fixation solution that is 1 volume of ethanol, 1 volume of methanol, and 3 volumes of acetone was prepared then fixed and then slide boxes Filing and we’ve moved to the Laboratory of Immunology lahijan Azad University Branch to investigate the pattern of leukocyte 1 gram of series slides with toluidine blue stained method, according to the morphology of the white blood cells, staining was white blood cells, in the population noted under study is preliminary.

So if in collecting samples there is corruption so check white blood cells is inefficient on. To examine patterns and differential diagnosis of adult cells based on pattern recognition Classic 5 cells, white blood cells, Cytochemical staining Naphthol AS–D chloroacetate esterase. Alpha–naphthalen propanoic acetate esterase, acid phosphatase, Periodic acid–Schiff staining Using the books of commercial construction company Sigma–Aldrich was used.

According to the PAS reaction lymph leukocyte reduced by more than 95 percent of reactivity reflects the release of immature cells to peripheral blood circulation, the elimination of 75 percent of the enzymatic reaction at baseline and decreased acid phosphatase activity, this conclusion is further confirmed, reduce the reactivity of alpha–naphthalen acetate esterase to 15 percent in other words, 85 percent of degeneration, Using Cytochemical in similar studies in other countries in this study the use of CytocheMICal acute and chronic lymphoid leukemia to determine exactly how and its variants and choose the most appropriate treatment regimen presents, by choosing the best treatment protocol based on the correct diagnosis faster and better patient responds to treatment. In patients with lymphoid leukemia was performed, the response was observed in 55% of cases. a total of 52 % Lymphoid leukemia cases, PAS positive, and 48 % Negative, ultrastructural criteria defined in the study should be used to distinguish and identify lymphoid leukemia, incidence
of leukemia and its clinical significance, is significantly different. This can be a quick and valuable way of proper infrastructure and morphological studies, detection and investigation of human leukemia.

Acknowledgments
The authors would like to have a special thanks to deputy of research and technology of Lahijan branch, Islamic Azad University, Lahijan, Iran. Foundation Project: Supported by deputy of research and technology of Lahijan branch, Islamic Azad University, Lahijan, Higher Education Thesis Program (Grant No. 1393/11/20–8045).

Conflict of interest statement
We declare that we have no conflict of interest.

References

Received: July 11, 2016
Article in Press: October 26, 2016
Accepted: Last modified on: November 20, 2016